
Workflow Managers for Research

Batch data processing using job graphs

About us

Research & Innovation IT @rit sheffield

- Training courses
- Project support
- Research computing

Joe Heffer @joe heffer

- Research Data Engineer
- Analytics in financial services industry
- Physics background

Sheffield.

What are workflow managers?

- Software tool using code or graphical interface
- Orchestrate multi-step analysis
 - o Defined sequence of tasks

University Of Sheffield.

Why use a workflow manager?

There are so many advantages to using a workflow system that the font becomes unreadably small.

- Portable
- Performance
 - o Parallel
 - Distributed computing
 - o Scaling to HPC, cloud, etc.
- Sustainable
 - Maintainable
 - Documentable
- Automation
 - Parameter scans
- Reproducible
- Shareable
- Generate metadata
 - Provenance
- Facilitates collaboration
- Reusabile
- Abstraction
 - Provides logical structure
- Multi-lingual

Users

Any research field that analyses data can use workflow systems, but Bioinformatics leads the way.

- Medicine
 - Bioinformatics (<u>Sheffield Bioinformatics Core</u>)
 - Medical imaging
- Physical sciences
 - Astronomy
 - High-energy particle physics
- Geospatial
- Multi-disciplinary
 - Machine learning

Existing workflow systems

There are hundreds of different systems.

- <u>Nextflow</u>
 - Proprietary
 - o Market leader
- Snakemake
- Workflow Description Language (WDL)
- Galaxy
- Bcbio

University Of Sheffield.

Reusable workflows

- Packaged for distribution
- Sharing sites:
 - WorkflowHub
 - NextFlow -> nf-core

Reproducibility

- Can be executed on different systems and produce exactly the same result (checksum)
- Suitable for publication
- Metadata generation

Multi-lingual

TOP 100 UNIVERSITY

HPC integration

• Facility-specific configuration templates

Why is a workflow standard needed?

There is a plethora of existing tools—why invent **yet another language**?

- Every workflow system is incompatible with the others
 - o Blocks reuse and collaboration
- Risks of proprietary technology; closed formats
- Is there a way to describe workflows in a vendor-neutral manner?
 - Can different workflows defined in incompatible languages be run on different workflow engines?

So, a single, **common standard** was created.

commonwl.org

Common Workflow Language

An open standard for analysis pipelines

Introduction to CWL

- Established 2014
- Designed for dataflow style batch analysis
 - Typically, tasks are command-line programs
- Stable; used at scale in production
- Lingua Franca
- Workflows defined YAML structured text files
 - o Separate files workflow design & inputs
- Roots in Make (software build automation tool)

CWL project

open stand the modem paradigm for standards

- Open standard
 - Facilitates sharing and collaboration
- Community
- Prevent vendor domination

TRANSPARENT GOVERNANCE

Designed with an open and transparent governance

OPEN AND FREE

Free and open standards

COMMUNITY FIRST

Community is a core principle of the CWL Project

VENDOR NEUTRALITY

Developed by a multi-vendor working group of organizations and individuals/contributors

CWL advantages

- Reproducible
- Portabile
- Interoperability
- Flexible
- Scalable

INTEROPERABILITY AND PORTABILITY

Portable and interoperable across a variety of software and deployment environments

REUSABILITY AND REPRODUCIBILITY

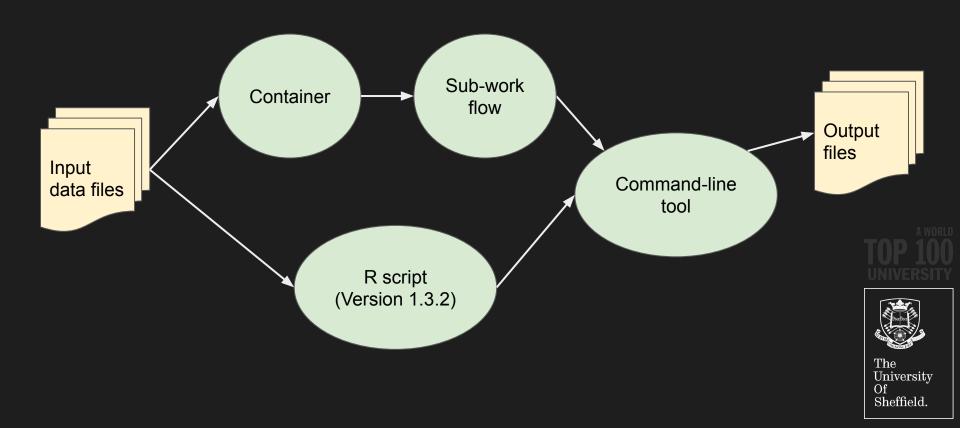
Enables scientists to reuse and reproduce their data analysis workflows

PARALLELIZATION AND SCALE

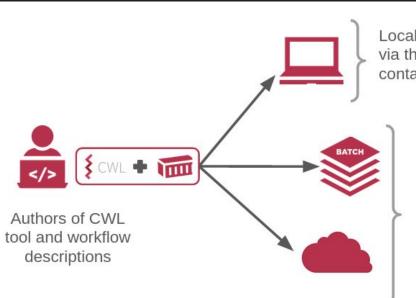
Scalable from workstations to cluster, cloud, and high performance computing (HPC environments

ECOSYSTEM SUPPORT

Supported by an ecosystem of tools, libraries, and editor plugins


CWL features

- Import other workflows (nested workflows)
- Custom types (input/output validation)
- Metadata annotations
- Templating
- Caching
 - Resume workflows
- Visualise workflows
- Code validation



Reproducibility

Portability

Local execution on Linux, macOS, and MS Windows via the CWL reference implementation (cwltool) and containers (e.g. Docker, uDocker, Singularity, podman)

Backends supported by various F/OSS CWL implementations

Scaling

Parallel execution using a task scheduler system.

Various **implementations** available:

- SLURM
- AWS
- Singularity on HPC

Sharing

There are <u>repositories</u> containing useful workflows that can be imported or reused.

- WorkflowHub
- Github repositories

Workflow runs generate **metadata**.

Development tools

- commonwl.org/tools
- VScode with code highlighting
- Execution reports

Sheffield.

Further resources

- Workflows Community Initiative
- Jackson et al <u>Using prototyping to choose a bioinformatics workflow</u> <u>management system</u> (they chose Nextflow)
- Ahmed et al <u>Design considerations for workflow management</u> systems use in production genomics research and the clinic
- Common Workflow Language (CWL)
 - <u>CWL website</u> (links to resources, community, etc.)
 - o <u>CWL User Guide</u>

