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Scripts are great, right?

Useful in drive for more automation and reproducible research

Esp. with HPC, cloud

What meant by defining research  workflows using shell scripting?

● Define the bulk of what you want to do programatically
● not type interactively
● Run one or more programs
● With particular parameters
● In a particular environment (access to storage, network, environment variables)
● To generate output



Example workflow: HPC job submission script

    #!/bin/bash
    #$ -l rmem=4G

    module load R/4.0
    module load Python/3.9

    cp -ra ~/$PROJECT/data /fastdata/te1st/
    python ~/$PROJECT/train.py -i /fastdata/te1st/data -o ~/$PROJECT/trained/
    python ~/$PROJECT/test.py ~/proj1/trained/
    R ~/$PROJECT/plots.py ~/proj1/trained/



Issue 1: how can that fail?

● Modules don't exist

● Not asked for enough memory

● Input dir doesn't exist

● A command might error but subsequent commands might still run!

● $PROJECT not defined

● $PROJECT has spaces in!

● …

In general: concise and convenient but many more silent failure modes than e.g. MATLAB



Command might error but subsequent commands might still run

ls ~/.bashrc
ls ~/idontexist
ls ~/.condarc  # will still run!

Tips:

● Well-behaved command should return a (hidden) 'exit code' which is 0 if all okay
● commanda && commandb  -> only run commandb if commanda succeeds
● commanda || commandb  -> only run commandb if commanda succeeds
● set -e    -> exit the script if a command returns a non-zero exit code



Undefined variables

Dereferencing shell variables results in the empty string if previously not explicitly assigned to:

$ echo ~/.conda/$NOTDEFINED/envs
/home/will/.conda//envs

Tips:

●  set -u    -> exit the script if reach an undefined variable

●  ${SOMEVAR-42}  -> default to '42' if SOMEVAR is undefined



Spaces in names / variables

With ~/$PROJECT/data

● If PROJECT is defined as e.g. my project
● Then e.g. ls $PROJECT will be interpreted as ls my project!  

Dealing with spaces in variables and in file/path names is hard

Tips:

● Avoid putting spaces in file/directory names!
● Safest way to reference variables:  somecommand "some text ${VARIABLE_NAME} more 

text"
● Use single and double quotes liberally 



● What if a script/job fails part way through?
○ Can re-run without having to edit script logic?

○ Or without deleting some output files?

● What if want script to be able to 'resume' if re-run?
○ Only generate output files not already generated?

○ Or if existing output files are older than input files and/or script?

● Adding such logic to shell scripts can be tricky

Issue 2: Fault tolerance (idempotence?)



Issue 3: Portability

● Given an existing shell script what aspects are specific to:
○ You?  

○ Your group/dept/institution?

○ The system you're running it on? 

○ Dataset(s)?

○ Date/time?

○ Parameters?

● Making scripts (inc shell scripts) and configs portable and reusable between 

researchers/systems/projects is tricky!



Issue 4: Multiple inputs and/or job steps 

On HPC / cloud:

● What if you have lots of input files/parameter sets?
● And/or lots of job steps?
● One job script with one or more loops?  

○ Not efficient if unnecessarily serial
● One job script with internal parallelism?  

○ Not efficient if different inputs / steps need different resources
○ Error handling might be tricky

● Job scripts that submit other jobs?
○ Can efficiently tune resource requirements per 'sub'-job and 
○ could execute complex network of tasks but
○ robust error handling is even harder!
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Summary

● Shell scripts useful for defining simple workflows

● But writing and testing robust complex shell scripts will always be hard

● Even if using a text editor (or shellcheck) that can advice on bad practices!

● Knowing where shell scripting is appropriate is important

● Better tools/processes exist for defining and running more complex workflows…

https://github.com/koalaman/shellcheck

